

Featured Event: Applying Science and Technology to policy and Practice in DRR - Wednesday 22 May 2013

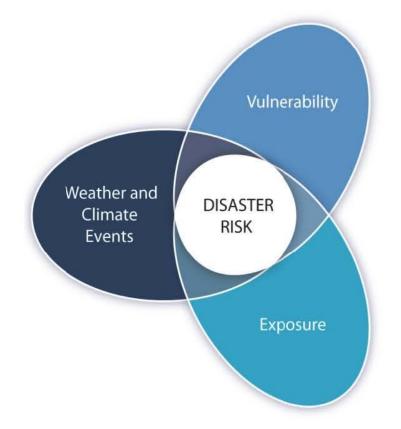
Disaster Risk Reduction developments in science since 2011

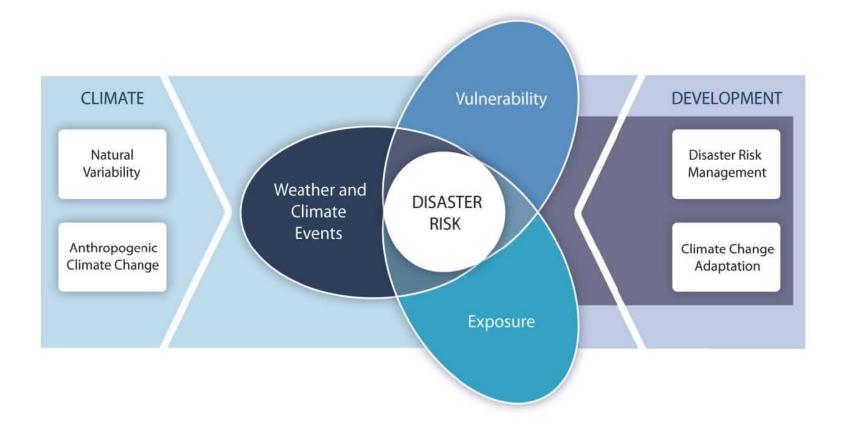
Professor Virginia Murray Head of Extreme Events and Health Protection, Public Health England Member of UNISDR Science and Technical Advisory Group

The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation

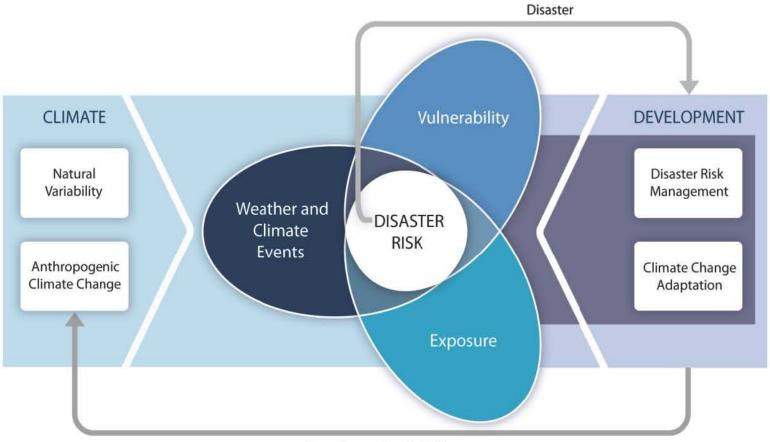
Impacts from weather and climate events depend on:

nature and severity of event


vulnerability


INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

Socioeconomic development interacts with natural climate variations and human-caused climate change to influence disaster risk



Increasing vulnerability, exposure, or severity and frequency of climate events increases disaster risk

Increasing vulnerability, exposure, or severity and frequency of climate events increases disaster risk

Greenhouse Gas Emissions

Disaster risk management and climate change adaptation can influence the degree to which extreme events translate into impacts and disasters

Effective risk management and adaptation are tailored to local and regional needs and circumstances

- changes in climate extremes vary across regions
- each region has unique vulnerabilities and exposure to hazards
- effective risk management and adaptation address the factors contributing to exposure and vulnerability

Managing the risks: heat waves in Europe

Risk Factors

- lack of access to cooling
- age
- pre-existing health problems
- poverty and isolation
- infrastructure

Risk Management/ Adaptation

- cooling in public facilities
- warning systems
- social care networks
- urban green space

INTERCOVERNMENTAL PARTI ON CLIMATE Change

 changes in urban infrastructure

Projected: *likely* increase in heat wave frequency and *very likely* increase in warm days and nights across Europe

Managing the risks: drought in the context of food security in West Africa

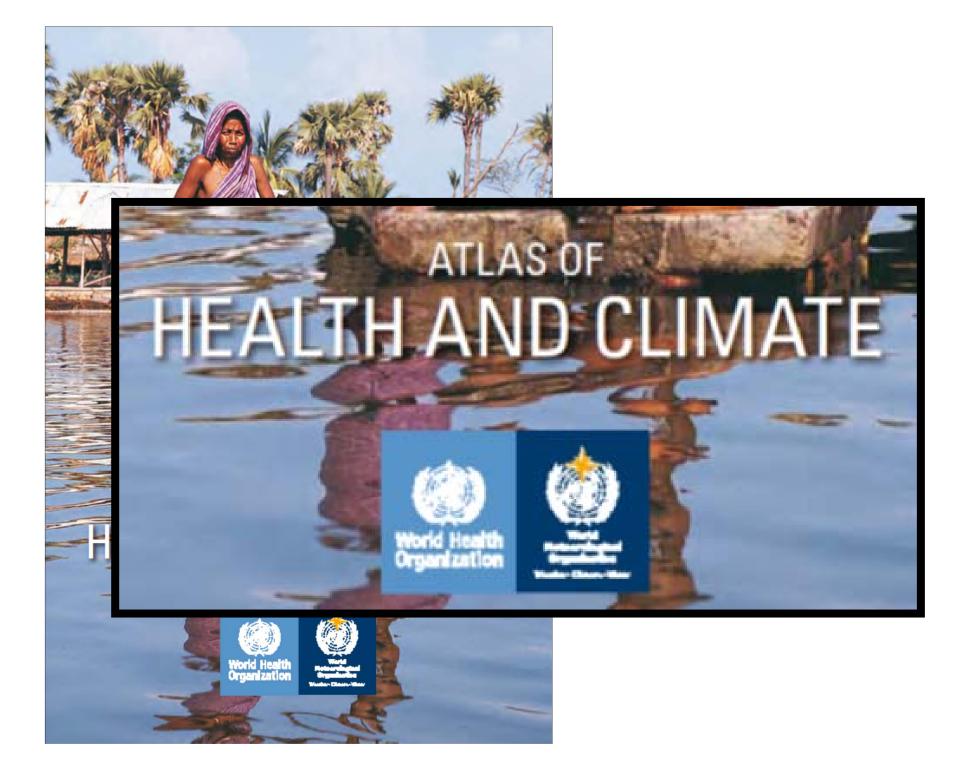
Risk Factors

- more variable rain
- population growth
- ecosystem degradation
- poor health and education systems

Risk Management/ Adaptation

- improved water management
- sustainable farming practice
- drought-resistant crops
- drought forecasting

Projected: low confidence in drought projections for West Africa



There are strategies that can help manage disaster risk now and also help improve people's livelihoods and well-being

The most effective strategies offer development benefits in the relatively near term and reduce vulnerability over the longer term

Reducing Risks of Future Disasters: Priorities for Decision Makers

Professor Sir John Beddington

Chief Scientific Adviser to HM Government

....*Foresight

Reducing Risks of Future Disasters

Priorities for Decision Makers

Final Project Report

		Ability to Produce Reliable Forecasts					
Abi		Now			2040		
AD		Spatial	Magnitude	Temporal	Spatial	Magnitude	Tempora
	Geophysical Hazards						
• To dis to ful		2	1.00	I.	3	2	l.
	Volcanoes	3	2	2	5	3	3
	Landslides	2	2	I.	3	3	2
	Tsunamis	2	2	T.	3	3	2
•	Hydrometeorological hazards	6 days ah	ead				
•	Storms	3	3	4	5	5	5
	Floods	3	3	4	5	5	5
	Droughts	5	5	5	5	5	5
• Sc	Hydrometeorological hazards 6 months ahead						
for	Character	2	2	2	3	3	3
	Floods	2	2	2	4	4	4
	Droughts	2	2	2	4	4	4
• Im	Infectious Disease Epidemics						
• Sc	Known Pathogens	2	5	2	4	5	4
	Recently emerged pathogens	1	4	I.	2	4	2
	Pathogens detected in animal reservoirs	I	I	I	2	3	2
	Low ability	Medium ability 3		4		High ability 5	

Science for emergencies

Natural Hazards Partnership: bringing together critical national and global scientific infrastructure

In summary these

- demonstrate that scientists have used problem-solving approaches that integrates all hazards and disciplines
- show that scientific communities have actively engaged to inform decision-making
- show that science should be key to the Post-2015 Hyogo Framework for Action

What next?

Science and technology need to inform policy and practice at

- Local
- National
- International

How to achieve regular interaction between science and policy makers? Do we need a chief scientific adviser/officer in every country?