Could climate become the weak link in your supply chain?
In January 2020, the McKinsey Global Institute published Climate risk and response: Physical hazards and socioeconomic impacts. In that report, we measured the impact of climate change by the extent to which it could affect human beings, human-made physical assets, and the natural world. We explored risks today and over the next three decades and examined specific cases to understand the mechanisms through which climate change leads to increased socioeconomic risk. This is one of our case studies, focused on supply chains.
We investigated cases that cover a range of sectors and geographies and provide the basis of a “micro-to-macro” approach that is a characteristic of McKinsey Global Institute research. To inform our selection of cases, we considered over 30 potential combinations of climate hazards, sectors, and geographies based on a review of the literature and expert interviews on the potential direct impacts of physical climate hazards. We found these hazards affect five different key socioeconomic systems: livability and workability, food systems, physical assets, infrastructure services, and natural capital.
We ultimately chose nine cases to reflect these systems and based on their exposure to the extremes of climate change and their proximity today to key physiological, human-made, and ecological thresholds. As such, these cases represent leading-edge examples of climate change risk. Each case is specific to a geography and an exposed system, and thus is not representative of an “average” environment or level of risk across the world. Our cases show that the direct risk from climate hazards is determined by the severity of the hazard and its likelihood, the exposure of various “stocks” of capital (people, physical capital, and natural capital) to these hazards, and the resilience of these stocks to the hazards (for example, the ability of physical assets to withstand flooding). We typically define the climate state today as the average conditions between 1998 and 2017, in 2030 as the average between 2021 and 2040, and in 2050 between 2041 and 2060. Through our case studies, we also assess the knock-on effects that could occur, for example to downstream sectors or consumers. We primarily rely on past examples and empirical estimates for this assessment of knock-on effects, which is likely not exhaustive given the complexities associated with socioeconomic systems. Through this “micro” approach, we offer decision makers a methodology by which to assess direct physical climate risk, its characteristics, and its potential knock-on impacts.
Climate science makes extensive use of scenarios ranging from lower (Representative Concentration Pathway 2.6) to higher (RCP 8.5) CO2 concentrations. We have chosen to focus on RCP 8.5, because the higher-emission scenario it portrays enables us to assess physical risk in the absence of further decarbonization. Such an “inherent risk” assessment allows us to understand the magnitude of the challenge and highlight the case for action. (We also choose a sea level rise scenario for one of our cases that is consistent with the RCP 8.5 trajectory). Our case studies cover each of the five systems we assess to be directly affected by physical climate risk, across geographies and sectors. While climate change will have an economic impact across many sectors, our cases highlight the impact on construction, agriculture, finance, fishing, tourism, manufacturing, real estate, and a range of infrastructure-based sectors. The cases include the following: — For livability and workability, we look at the risk of exposure to extreme heat and humidity in India and what that could mean for that country’s urban population and outdoor-based sectors, as well as at the changing Mediterranean climate and how that could affect sectors such as wine and tourism. — For food systems, we focus on the likelihood of a multiple-breadbasket failure affecting wheat, corn, rice, and soy, as well as, specifically in Africa, the impact on wheat and coffee production in Ethiopia and cotton and corn production in Mozambique. — For physical assets, we look at the potential impact of storm surge and tidal flooding on Florida real estate and the extent to which global supply chains, including for semiconductors and rare earths, could be vulnerable to the changing climate. — For infrastructure services, we examine 17 types of infrastructure assets, including the potential impact on coastal cities such as Bristol in England and Ho Chi Minh City in Vietnam. — Finally, for natural capital, we examine the potential impacts of glacial melt and runoff in the Hindu Kush region of the Himalayas; what ocean warming and acidification could mean for global fishing and the people whose livelihoods depend on it; as well as potential disturbance to forests, which cover nearly one-third of the world’s land and are key to the way of life for 2.4 billion people.